Genetic evidence for widespread population size expansion in North American boreal birds prior to the Last Glacial Maximum

Abigail A. Kimmitt¹, Teresa M. Pegan¹, Andrew W. Jones²†, Kristen S. Wacker¹, Courtney L. Brennan², Jocelyn Hudson³, Jeremy J. Kirchman⁴, Kristen Ruegg⁵, Brett W. Benz¹, Rachael Herman¹,6 and Benjamin M. Winger¹

¹Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA
²Department of Ornithology, Cleveland Museum of Natural History, Cleveland, OH 44106, USA
³Royal Alberta Museum, Edmonton, Alberta Canada, T5J 0G2
⁴New York State Museum, Albany, NY 12230, USA
⁵Biology Department, Colorado State University, Fort Collins, CO 80521, USA
⁶Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA

© 2023 The Author(s) Published by the Royal Society. All rights reserved.

Pleistocene climate cycles are well documented to have shaped contemporary species distributions and genetic diversity. Northward range expansions in response to deglaciation following the Last Glacial Maximum (LGM; approximately 21 000 years ago) are surmised to have led to population size expansions in terrestrial taxa and changes in seasonal migratory behaviour. Recent findings, however, suggest that some northern temperate populations may have been more stable than expected through the LGM. We modelled the demographic history of 19 co-distributed boreal-breeding North American bird species from full mitochondrial gene sets and species-specific molecular rates. We used these demographic reconstructions to test how species with different migratory strategies were affected by glacial cycles. Our results suggest that effective population sizes increased in response to Pleistocene deglaciation earlier than the LGM, whereas genetic diversity was maintained throughout the LGM despite shifts in geographical range. We conclude that glacial cycles prior to the LGM have most strongly shaped contemporary genetic diversity in these species. We did not find a relationship between historic population dynamics and migratory strategy, contributing to growing evidence that major switches in migratory strategy during the LGM are unnecessary to explain contemporary migratory patterns.

1. Introduction

Glaciation cycles throughout the Quaternary have shaped current-day global biodiversity patterns, including species distributions and genetic structure [1]. Range shifts in response to changes in habitat suitability during glacial cycles have allowed species to persist in the face of climate oscillations [2,3], and such historic changes in geography are hypothesized to be associated with changes in effective population size (Ne). A widespread presumption is that Northern Hemisphere species experienced northward range shifts and concomitant population size expansions in the wake of glacial retreat following the Last Glacial Maximum (LGM; approximately 21 000 BP) [2,4–12], and studies have concluded that post-LGM expansion of bottlenecked populations explain the low levels of contemporary genetic structure and variation often observed in high latitude species (e.g. [11,13,14]). Recent studies, however, have provided genetic evidence...
that temperate and boreal taxa may have experienced substantial population size reductions and recovery prior to the LGM [15–17]. These results raise an underexplored possibility that earlier glacial cycles have shaped contemporary population genetic patterns more than previously thought [18,19], with potential relative stability of N_e through the LGM despite obvious shifts in geographical range. The dynamics of biodiversity persistence through the LGM remains an important area of inquiry at the intersection of evolution, palaeoecology and earth science [3,5].

The relationship between glacial-interglacial range shifts and population dynamics has particular significance for migratory species breeding in the Northern Hemisphere. Like most north-temperate species, periods of glaciation must have either restricted migratory species’ breeding ranges to more southerly latitudes than exist today or forced species into northern glacial refugia [7,20–22]. Because the migratory behaviour of a population is intrinsically linked to its biogeography (i.e. location of breeding and non-breeding ranges [23,24]), the impact of Pleistocene range shifts on seasonal migration has been the subject of recent debate [17,25–27]. Owing to the dearth of fossil evidence that could illuminate historical migratory patterns in birds [25,28,29], evaluating changes in migration patterns throughout time requires modelling of historical dynamics based on information from contemporary populations.

Here, we investigate how glacial cycles have shaped population dynamics of migratory species by sequencing nearly 800 mitochondrial genomes to model the demographic history of 19 avian species with broadly overlapping breeding ranges and varying migratory distances to their wintering ranges. These species breed across boreal and temperate forest of North America and winter across an array of temperate and tropical latitudes (Figure 1). Previous work on a smaller number of species has shown that co-distributed boreal bird species often exhibit congruent phylogeographic patterns [27,31–33], but how these patterns relate to Pleistocene population dynamics remains poorly understood. We used low-coverage whole-genome sequencing, which enabled us to sample full mitochondrial protein-coding gene sets at high coverage from many individuals [6,34]. By sequencing many species, individuals and mitochondrial genes, we test whether members of the sympatric species assemblage that presently occupy the previously glaciated North American boreal forest exhibit evidence of population size change during the Pleistocene and whether the timing of population expansions corresponds with glacial retreat following the LGM.

A general challenge of using genetic data to infer the timing of historical events is that results can vary greatly depending on the DNA substitution rate used in analyses [35–37] and the extent to which genetic markers are evolving under the neutral coalescent. Although genome-wide multi-locus data have become straightforward to gather and have several advantages over single-locus data for historical demography [38–40], gene- and taxon-specific substitution rates appropriate for historical demographic models are generally lacking [19,41–44]. By contrast, the molecular evolution of mitochondrial DNA (mtDNA) in birds has been the subject of much study [45–50], providing the opportunity to compare historical demographic scenarios under a range of previously inferred substitution rates. We modelled changes in population size over time using mass-corrected substitution rates and compare results under alternative fossil calibrations of nucleotide substitution rates [47].

We also assess how species with different migratory strategies were affected by glacial cycles. LGM range shifts have been considered so severe that they have been predicted to force the loss of migratory behaviour as species shifted towards the equator (migratory switch), such that modern long-distance migratory species shifted to breed year-round in their low-latitude, tropical wintering ranges [7,51]. For example, based on species distribution models (SDMs), Zink & Gardner [51] inferred that the putative tropical winter ranges of long-distance migrants were similar in size or even larger at the LGM, which they considered to be evidence that these species abandoned their migratory lifestyle to occupy tropical ranges year-round at the LGM. By contrast, they concluded that temperate-breeding short-distance migrants (those that currently

Figure 1. Map of specimen sampling locations for all 19 species. We sampled an average of 41.9 individuals (range = 24–53) per species from three to four regions of the boreal forest (colour of the points reflects the sampling location): (i) central Alberta, (ii) Manitoba, (iii) northern Michigan and Minnesota, and (iv) the northeast United States (Adirondack and Green Mountains of New York and Vermont). Each point represents an individual, such that darker shading indicates multiple individuals. The boreal forest (green), taiga (light blue) and Rocky Mountains (grey) are designated following Omernik & Griffith [30].
winter in temperate regions closer to their breeding grounds) were more likely to have retained sufficient—though still reduced—breeding areas in North America to persist at northern latitudes through the LGM. Other studies have similarly suggested that contemporary migratory behaviour has evolved via rapid population expansion from a subtropical ancestor since the LGM [7,14]. However, several subsequent studies have challenged these ideas [17,25–27], finding evidence that long-distance migrants could have persisted during the Late Pleistocene (126 000 – 11 700 BP [52]) at breeding latitudes where seasonal migration to lower non-breeding latitudes was maintained. If contemporary boreal long-distance migrants switched to become year-round tropical birds during the LGM, we predict that long-distance migrants would have larger historic N, than short-distance migrants owing to the occupancy of putatively larger ranges at the LGM than short-distance migrants [51]. By contrast, if a species’ occupancy of northern glacial refugia did not depend on its migratory behaviour, we predict no relationship between historic N, or the timing of population expansion and migration distance.

2. Methods

(a) Study system and sampling

Our study system includes 19 co-distributed boreal forest bird species. Two species are woodpeckers (Piciformes), and the remaining are from 10 genera and six families of songbirds (Passeriformes) (table 1). These species vary in migration distance (electronic supplementary material, figure S1) but otherwise have similar life histories (e.g. mating system, age to first breeding season; [53]) and are distributed widely across forested habitats of the boreal and the temperate-boreal transition (hemiboreal) region [30,33,55].

We sequenced DNA from frozen or ethanol-preserved specimen-vouchered tissue samples deposited in our museum institutions or obtained from other museum tissue collections (mean = 41.9 samples per species, range = 24–53 samples, total = 796 samples; electronic supplementary material, table S1). All samples were collected during the breeding season. Fieldwork was approved by the University of Michigan Institutional Animal Care and Use Committee and all relevant permitting authorities (see Ethics and Acknowledgements).

Historical demographic analyses such as the Bayesian skyline plot approach we use (hereafter ‘BSP’) can be confounded by population structure [35,56]. Eastern continental populations of North American boreal birds exhibit limited genetic structure across much of their large ranges, whereas western montane populations often exhibit greater genetic diversity and spatial structure [27,31,32,57,58]. Therefore, to help meet assumptions of panmixia for coalescent demographic history analysis, we limited sampling to the continental boreal forest belt east of the Rocky Mountains, from central Alberta, Canada to the northeastern United States, regardless of the extent of the full species range (figure 1). We also tested for population structure within this region (see Population Structure, below). Our sampling is ideal for our goal of inferring the timing of population expansion among co-distributed populations of many species, as opposed to discovering glacial refugia or evaluating the timing of intraspecific divergences [27,59–61]. Importantly, our sampling scheme

Table 1. Summary of the species used from the boreal system, including family and species, migratory distance (MD) and mass for species (Winger & Pegan [53]), sample size (N), average pairwise F_{ST} and Tajima’s D (D). (Pairwise F_{ST} was calculated based on Weir & Cockerham [54], which can yield negative values; however, all negative F_{ST} values were rounded to zero. In Regulus satrapa, a species that exhibited some evidence of population structure, we conducted final analyses on a subset of geographically adjacent populations without structure. Subset sample sizes for the subset are reported in parentheses. Tajima’s D and average pairwise F_{ST} are calculated from the subset of populations without structure.)

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>MD (km)</th>
<th>Mass (g)</th>
<th>N</th>
<th>F_{ST}</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picidae</td>
<td>Sphyrapicus varius</td>
<td>2578</td>
<td>50.3</td>
<td>48</td>
<td>0.07</td>
<td>-2.26</td>
</tr>
<tr>
<td>Picidae</td>
<td>Dryobates villosus</td>
<td>0</td>
<td>70.4</td>
<td>39</td>
<td>0.01</td>
<td>-2.58</td>
</tr>
<tr>
<td>Tyrannidae</td>
<td>Empidonax flaviventris</td>
<td>3939</td>
<td>11.6</td>
<td>38</td>
<td>0.07</td>
<td>-2.32</td>
</tr>
<tr>
<td>Tyrannidae</td>
<td>Empidonax alborum</td>
<td>6531</td>
<td>12.8</td>
<td>34</td>
<td>0.02</td>
<td>-2.27</td>
</tr>
<tr>
<td>Vireonidae</td>
<td>Vireo solitarius</td>
<td>2740</td>
<td>16.6</td>
<td>49</td>
<td>0</td>
<td>-2.1</td>
</tr>
<tr>
<td>Vireonidae</td>
<td>Vireo olivaceus</td>
<td>6739</td>
<td>16.7</td>
<td>46</td>
<td>0.04</td>
<td>-2.01</td>
</tr>
<tr>
<td>Regulidae</td>
<td>Setophaga coronata</td>
<td>2555</td>
<td>12.5</td>
<td>40</td>
<td>0.14</td>
<td>-2.45</td>
</tr>
<tr>
<td>Regulidae</td>
<td>Setophaga virens</td>
<td>2387</td>
<td>6.7</td>
<td>30</td>
<td>0</td>
<td>-2.47</td>
</tr>
<tr>
<td>Turdidae</td>
<td>Catharus fuscescens</td>
<td>7401</td>
<td>31.2</td>
<td>39</td>
<td>0.06</td>
<td>-2.24</td>
</tr>
<tr>
<td>Turdidae</td>
<td>Catharus ustulatus</td>
<td>6204</td>
<td>30.8</td>
<td>51</td>
<td>0</td>
<td>-2.55</td>
</tr>
<tr>
<td>Turdidae</td>
<td>Catharus guttatus</td>
<td>2318</td>
<td>31</td>
<td>44</td>
<td>0</td>
<td>-2.71</td>
</tr>
<tr>
<td>Passerellidae</td>
<td>Junco hyemalis</td>
<td>1457</td>
<td>19.9</td>
<td>47</td>
<td>0.04</td>
<td>-2.43</td>
</tr>
<tr>
<td>Passerellidae</td>
<td>Zonotrichia albicollis</td>
<td>1749</td>
<td>25.9</td>
<td>53</td>
<td>0.01</td>
<td>-2.54</td>
</tr>
<tr>
<td>Passerellidae</td>
<td>Melospiza lincolnii</td>
<td>2909</td>
<td>17.4</td>
<td>50</td>
<td>0.03</td>
<td>-2.46</td>
</tr>
<tr>
<td>Parulidae</td>
<td>Geothlypis philadelphia</td>
<td>4729</td>
<td>12.6</td>
<td>36</td>
<td>0.09</td>
<td>-1.65</td>
</tr>
<tr>
<td>Parulidae</td>
<td>Setophaga fusca</td>
<td>5147</td>
<td>9.7</td>
<td>40</td>
<td>0</td>
<td>-2.53</td>
</tr>
<tr>
<td>Parulidae</td>
<td>Setophaga palmarum</td>
<td>2962</td>
<td>10.3</td>
<td>44</td>
<td>0.01</td>
<td>-2.4</td>
</tr>
<tr>
<td>Parulidae</td>
<td>Setophaga coronata</td>
<td>2555</td>
<td>12.5</td>
<td>49</td>
<td>0.02</td>
<td>-2.45</td>
</tr>
<tr>
<td>Parulidae</td>
<td>Setophaga virens</td>
<td>3861</td>
<td>8.8</td>
<td>24</td>
<td>0.14</td>
<td>-1.14</td>
</tr>
</tbody>
</table>
encompasses most of the longitudinal breadth of species’ ranges as well as a likely axis of southeast to northwest expansion [27], thereby making it an appropriate system to test historical demography in these taxa. For each species, we sought to sample 10–15 individuals from each of three-four regions spanning the boreal and hemiboreal forest across northern North America (figure 1; electronic supplementary material, tables S1 and S2). These regions generally correspond to (i) central Alberta, (ii) Manitoba, (iii) northern Minnesota and Michigan, and (iv) the Adirondack and Green Mountains of New York and Vermont, respectively.

(b) Mitochondrial gene set construction
Libraries were prepared using a modified Illumina Nextera library preparation protocol [62] and then sequenced on either an Illumina HiSeq platform or Illumina NovaSeq 6000 using paired-end sequencing of 150 bp reads. De novo assembly of full mitochondrial protein-coding gene sets (13 genes) was conducted using NOVOplasty v4.3.1 [63]. We removed 27 samples from the study owing to errors in library preparation or assembly failure, resulting in a total of 796 individuals with full mitochondrial gene sets (see the electronic supplementary material, Methods for additional details).

(c) Population structure
We tested for population structure across the boreal and hemiboreal belt using a tree-based generalized mixed yule coalescent (GMYC) approach [64]. GMYC [64] is an implementation of the multi-species coalescence suitable for single-locus haploid datasets which diagnoses structure in phylogenies by testing for deviations from a single panmictic population [65–67]. Additional details of the GMYC analysis are provided in the electronic supplementary material. Methods. We also calculated average pairwise fixation index (F_{ST}) between populations as an additional test of population structure. F_{ST} was calculated by binning samples into four populations (Alberta, Manitoba, Michigan + Minnesota and New York + Vermont; figure 1) and using R packages adegenet v 2.1.5 [68] and hierfstat v 0.5–10 [69] (table 1).

(d) Demographic inference
We first tested for signatures of population expansion in each species by calculating Tajima’s D [70] using the R package pegas v 1.1 [71]. We then constructed BSPs for each species in BEAST2 (v 2.6.6) [72]. We conducted ‘BMODELTEST’ analyses in BEAST2 on a subsample of the data ($n = 5$ species) to select the site model and parameters for BSP analyses. Based on these results, all BSP analyses were conducted using the TN93 model of nucleotide substitutions as the site model [73]. Proportion of invariant sites was estimated, and gamma rate heterogeneity was estimated using a gamma category count of 4.

We applied a strict clock model but with a species-specific mass-corrected substitution rate [47]. Although the mechanism is poorly understood, substitution rates are known to be negatively correlated with body mass in vertebrates [74], such that body size-corrected rates are more realistic than the ‘2% rule’ for mtDNA [47]. We further tested the influence of alternative fossil calibrations of these size-corrected rates on the inferred timing of population expansion. We followed Nabholz et al. [47] to calculate substitution rate for full mitochondrial protein-coding gene sets with their equation:

$$\text{substitution rate} = \frac{10^\text{slope} \times \log_{10}(\text{body mass}) + \text{intercept}}{100}.$$

We used average body mass (table 1) reported in previous work [53,75]. Slopes and intercepts for alternative fossil calibrations were provided from linear models in Nabholz et al.: $\log_{10}(\text{substitution rate}) = \log_{10}(\text{body mass}) + 0.7$ [47].

We estimated two substitution models based on alternative fossil calibrations performed by Nabholz et al. (their ‘calibration 2’ and ‘calibration 4’) for the whole concatenated mitochondrial gene set and separately for an alignment of only the third codons, resulting in a total of four analyses for each species [47]. Their fossil calibrations 1–3 were based on different fossil sets and exhibited differences in the maximum bound for the Neognathae/ Paleognathae split and Psittaciformes/Passeriformes split. All three calibrations, however, yielded similar divergence dates [8,47]. ‘Calibration 4’, unlike the other three calibrations, included a constraint (34–28 Myr) on the Oscine/Suboscine split and produced younger divergence dates in Passeriformes and therefore faster molecular rates. Using both calibrations 2 and 4 allowed us to account for uncertainty around optimal fossil calibration of passerine molecular rates [47]. Hereafter, we refer to ‘calibration 2’ as the ‘slow calibration’ and ‘calibration 4’ as the ‘fast calibration’.

Avian body mass is more strongly negatively correlated with third codon substitution rates than substitution rates using all codons, which could result from stronger selection on the first and second codon positions [47]. Substitution rates using all codons are more similar to the widely used 2% rule substitution rate (0.0105 substitutions site$^{-1}$ lineage$^{-1}$ Myr$^{-1}$), whereas body mass-corrected rates may be more accurate when inferred from third codons only [47]. By repeating analyses using both codon sets, we were able to test our hypotheses under different assumptions. To compare our analyses to a more standard approach used in numerous past demographic studies in birds, we also created BSPs for each species using all codons of the cytochrome b (cytb) gene and the ‘2% rule’ cytb molecular rate [45].

All models were run six times for 50 million steps and sampled every 5000 steps with the first 10% (5 million steps) discarded as burn-in. Log and tree files were then combined using LENCOMP. BSPs were generated in TRACER (v 1.7.2) (bins = 500). Results were only used from analyses that resulted in sufficient effective sample sizes of more than 200 [76].

To identify timing of population size expansion, we constructed generalized additive models (GAMs) with the mgcv package (v 1.8–38) using the estimated median N_c and a smoothing term for time [77]. We then determined changepoints in the median BSP slope by extracting the second derivatives of GAMs and identifying the minimum and maximum second derivative using the gratia package (v 0.6.0) [78]. Visual inspection indicated that the second derivatives accurately capture changepoints for all species except for Vireo solitarius, for which we determined the timing of population expansion only from visual inspection of the BSP GAMs.

We also assessed the timing and synchrony of population size expansion across our species using a hierarchical ABC coalescent approach [79] described in [80]. Using the PFEMAP package [80], we estimated four parameters of the demographic change: (i) the proportion of species exhibiting synchronous demographic change (q), (ii) timing of synchronous change (T_s), (iii) the mean time of demographic changes ($E(i)$), and (iv) the dispersion index. Details on the priors and model specifications are included in the electronic supplementary material, Methods.

Finally, we tested the relationship between migration distance and both historic N_c and timing of initiation of population expansion extracted from the BSP GAM analyses. Linear models were constructed for each of the calibration–codon model sets. Migration distances for all species (table 1) were estimated in previous work as the geodesic distance between breeding and winter range centroids [53]. We confirmed whether there was phylogenetic signal in both model sets for each variable with phyloews v 1.0–1 [81] using an ultrametric molecular phylogeny constructed in Pegan & Winger [82] from Jetz et al. [83]. We report results from the ordinary least-squares linear regression for historic N_c.

models because there was no phylogenetic signal detected in any of the models [84]. Phylogenetic signal was significant for the models evaluating initiation of population expansion (p < 0.05) except for the model using estimates from the cyt b gene (p = 1); therefore, we report results from phylogenetic generalized least-squares fit using maximum-likelihood and a Brownian motion correlation matrix for each calibration–codon model using ape v. 5.6–2 [85] and fitme v. 3.1–159 [86], and we report results from the ordinary least-squares linear regression for the cyt b model.

3. Results

Since samples were collected across the boreal belt, our a priori expectation was that spatial genetic structure would be low, making our study populations suitable for BSP analysis. Indeed, we found little to no geographical population structure in 18 species (electronic supplementary material, table S2 and Methods) but some evidence of structure in 18 species (electronic supplementary material, table S2 and Methods) but some evidence of structure in 18 species (electronic supplementary material, table S2 and Methods). Therefore, we ran the demographic analyses on a subset of individuals of *R. satrapa*, resulting in a final total of 792 full mitochondrial gene sets across all species. We also found little to no population structure in the final sample dataset pairwise FST calculations (average pairwise FST: range 0–0.14; table 1).

Consistent with expectations for population expansion, we observed significantly negative Tajima’s D for 17 out of 19 of the species (table 1). Tajima’s D was negative but not significant for *Geothlypis philadelphia* (p = 0.10) and *Setophaga virens* (p = 0.26).

Given that the substitution rates used (substitutions site−1 lineage−1 Myr−1) do not consider generation time, the y-axis of the BSPs measures Nₑ x generation time [36]. However, since species in this study do not vary greatly in generation time (2.29 ± 0.07 years, range: 1.78–3.11 years; [87]), we did not correct for generation time and hereafter refer to the y-axis as estimated Nₑ. All species exhibited increases in Nₑ over time across all BSP estimations (figure 2, table 2; electronic supplementary material), except for cyt b-only analyses for two species (*Corthylio calendula* and *Junco hyemalis*) that exhibited population stasis, probably owing to poor resolution of the cyt b-only BSP (figure 2; electronic supplementary material, figures S9 and S14). Estimates for timing of population expansion for *Co. calendula* were also excluded for third codon analysis because there were no clear change points in the BSPs.
Table 2. Timing of population size expansion, in years before present, approximated from the second derivatives from the GAMs of the estimated median Ne from BSP analysis in BEAST and a smoothing term for time. (Cytb-only analyses for two species (Corthylio calendula and Junco hyemalis) exhibited population stasis, such that we were unable to estimate change points. Estimates for timing of population expansion for Co. calendula were also excluded for third codon analysis because there were no clear change points in the BSPs.)

<table>
<thead>
<tr>
<th>species</th>
<th>timing of N_e expansion (years before present)</th>
<th>all codons, fast calibration</th>
<th>all codons, slow calibration</th>
<th>third codon, fast calibration</th>
<th>third codon, slow calibration</th>
<th>Cytb, 2% rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphyrapicus varius</td>
<td>77 924</td>
<td>51 183</td>
<td>47 942</td>
<td>31 501</td>
<td>29 864</td>
<td></td>
</tr>
<tr>
<td>Dryobates villosus</td>
<td>118 478</td>
<td>79 882</td>
<td>49 915</td>
<td>33 927</td>
<td>34 665</td>
<td></td>
</tr>
<tr>
<td>Empidonax flaviventris</td>
<td>117 923</td>
<td>66 352</td>
<td>65 525</td>
<td>37 381</td>
<td>73 244</td>
<td></td>
</tr>
<tr>
<td>Empidonax alnorum</td>
<td>96 510</td>
<td>54 785</td>
<td>47 501</td>
<td>27 172</td>
<td>46 012</td>
<td></td>
</tr>
<tr>
<td>Vireo solitarius</td>
<td>252 107</td>
<td>154 511</td>
<td>186 893</td>
<td>109 897</td>
<td>114 637</td>
<td></td>
</tr>
<tr>
<td>Vireo olivaceus</td>
<td>196 816</td>
<td>114 784</td>
<td>119 410</td>
<td>70 145</td>
<td>107 584</td>
<td></td>
</tr>
<tr>
<td>Corthylio calendula</td>
<td>30 745</td>
<td>16 157</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Regulus satrapa</td>
<td>129 289</td>
<td>68 009</td>
<td>74 258</td>
<td>39 547</td>
<td>77 541</td>
<td></td>
</tr>
<tr>
<td>Catharus fuscescens</td>
<td>75 229</td>
<td>46 921</td>
<td>38 225</td>
<td>23 842</td>
<td>34 006</td>
<td></td>
</tr>
<tr>
<td>Catharus ustulatus</td>
<td>89 730</td>
<td>55 706</td>
<td>88 755</td>
<td>55 746</td>
<td>68 947</td>
<td></td>
</tr>
<tr>
<td>Catharus guttatus</td>
<td>46 855</td>
<td>29 237</td>
<td>28 387</td>
<td>17 889</td>
<td>23 397</td>
<td></td>
</tr>
<tr>
<td>Junco hyemalis</td>
<td>36 347</td>
<td>21 715</td>
<td>19 918</td>
<td>12 018</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Zonitrichia albicollis</td>
<td>83 153</td>
<td>50 573</td>
<td>54 815</td>
<td>34 232</td>
<td>53 392</td>
<td></td>
</tr>
<tr>
<td>Melospiza lincolnii</td>
<td>63 313</td>
<td>37 273</td>
<td>35 741</td>
<td>21 230</td>
<td>32 313</td>
<td></td>
</tr>
<tr>
<td>Geothlypis philadelphia</td>
<td>118 507</td>
<td>66 041</td>
<td>70 366</td>
<td>40 079</td>
<td>96 008</td>
<td></td>
</tr>
<tr>
<td>Setophaga fusca</td>
<td>118 978</td>
<td>66 035</td>
<td>68 929</td>
<td>38 128</td>
<td>65 408</td>
<td></td>
</tr>
<tr>
<td>Setophaga palmarum</td>
<td>60 538</td>
<td>33 488</td>
<td>41 692</td>
<td>23 748</td>
<td>46 711</td>
<td></td>
</tr>
<tr>
<td>Setophaga coronata</td>
<td>58 169</td>
<td>33 082</td>
<td>34 730</td>
<td>19 803</td>
<td>27 938</td>
<td></td>
</tr>
<tr>
<td>Setophaga virens</td>
<td>110 048</td>
<td>59 377</td>
<td>63 260</td>
<td>35 836</td>
<td>71 390</td>
<td></td>
</tr>
</tbody>
</table>

As expected [47], the molecular rates from the slow calibration produced older expansion dates than rates from the fast calibration (figure 3, table 2). Substitution rates that accounted for mutations at all codon positions generally yielded older expansion dates than rates based on third codon positions only (figure 3). For the slow calibration substitution rates, all 19 species were estimated to initiate population expansion prior to the LGM using all positions of the whole mitochondrial gene set (estimated range of initiation dates from BSP median values = 109 878–16 157 BP; table 2) compared to 17 out of 18 species estimated to initiate expansion prior to the LGM using third codons only (estimated range = 114 637–8784 BP; figure 3, table 2). For the fast calibration substitution rates, 17 out of 19 species were estimated to initiate population expansion prior to the LGM for all positions of the whole mitochondrial gene set (estimated range = 154 511–16 157 BP; table 2), whereas 12 out of 18 species were estimated to initiate expansion prior to the LGM using third codons only (estimated range = 109 897–12 018 BP; figure 3, table 2). For cytb analyses using the 2% rule, 15 out of 17 species were estimated to initiate expansion prior to the LGM (estimated range = 114 637–8784 BP; figure 3, table 2).

Our estimates of the timing of initiation and cessation of population size expansion based on the changes in slope of median Ne should be considered approximate, given 95% highest posterior density intervals around BSP analyses. Nevertheless, it is notable that the analyses overwhelmingly indicated an initiation of population size expansion well before the LGM for nearly all species. Our hierarchical ABC analysis also suggested that 91–92% of the species experienced synchronous population size expansion around 71 862–74 405 BP (electronic supplementary material, table S3, figure S22). We found no relationship between contemporary migratory distances and either historic Ne or timing of population expansion (table 3; electronic supplementary material, figures S24 and 25).

4. Discussion
We used advances in the estimation of mtDNA substitution rates together with full mitochondrial protein-coding gene sets to evaluate historic population dynamics from 19 co-distributed bird species that breed across the boreal forest belt in North America. Using BSP we found evidence for population size expansion in all 19 species, suggesting a demographic history of population bottlenecks sometime in the Late Pleistocene. Contrary to prior assumptions that timing of population size expansion was driven by range expansions following the LGM [2,4], we found that most species probably experienced their most dramatic population size expansion prior to the LGM. We corroborated these findings using a hierarchical ABC approach, which suggested that greater than 69% of species expanded prior to the LGM,
with the shared expansion occurring around 64 000–75 000 BP. Interestingly, one of the few species inferred in our study to experience population expansion during or following the LGM is *J. hyemalis*, which has emerged as a classic example of rapid population expansion and differentiation following the LGM [88,89]. Our finding that the majority of co-distributed taxa probably have a different population history than the junco is robust to alternative fossil calibrations of species-specific nucleotide substitution rates and are also recovered using the 2% rule. These rates yielded a wide range of estimated dates for initiation of population size expansion [47], but expansion initiation dates were consistently prior to the LGM in the majority of species, even under demographic models that used the fastest rates. Alternative estimates of substitution rates not evaluated here include those from a study of the honeycreeper radiation [50]; these rates were faster than our slow calibration molecular rates but comparable to our fast calibration molecular rates and thus within the range of our results. Other recently calculated gene-specific molecular rates for birds [90,91] are slower than rates estimated by Nabholz et al. [47], such that using these rates would have estimated timing of population size expansion even earlier in history than we recover here.

For our results to be credible, two conditions must be met. First, there need to have been prior glacial cycles that could have plausibly affected the population sizes of the species in question during the Late Pleistocene. Second, population stability must have been higher than assumed through the LGM despite range displacement owing to glaciation. Recent reconstructions of glaciation throughout the Quaternary indicate that glaciation prior to the LGM peaked approximately 60 000 BP and then was followed by rapid recession of North American ice sheets during the Middle

Figure 3. Comparison of timing of population size expansion (initiation of increases in N_e) across different substitution rates. Kernels show density of population expansion events whereas points are individual species population expansion events. The LGM (26 000–19 000 BP) is demarcated in grey.
Table 3. Results of models testing the relationship between migratory distance and (a) historic effective population size \((N_e)\), and (b) initiation of population expansion. \((N_e)\) and initiation of population expansion estimated from each codon-calibration set of molecular rates were used in independent models. Given significant phylogenetic signal in the calibration–codon models for initiation of population expansion, we report results from phylogenetic generalized least-squares regression. For historic \((N_e)\) models and the cyt-b only model for initiation of population expansion, we report results from the ordinary least-squares linear regression because there was no significant phylogenetic signal detected.}

<table>
<thead>
<tr>
<th>historical dynamics</th>
<th>models</th>
<th>(\beta)</th>
<th>s.e.</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) historic (N_e)</td>
<td>all codons (slow calibration)</td>
<td>67.59</td>
<td>130.92</td>
<td>0.613</td>
</tr>
<tr>
<td></td>
<td>all codons (fast calibration)</td>
<td>44.29</td>
<td>81.19</td>
<td>0.593</td>
</tr>
<tr>
<td></td>
<td>third codons (slow calibration)</td>
<td>-9.34</td>
<td>56.69</td>
<td>0.871</td>
</tr>
<tr>
<td></td>
<td>third codons (fast calibration)</td>
<td>-5.07</td>
<td>33.71</td>
<td>0.882</td>
</tr>
<tr>
<td></td>
<td>cyt-b-only</td>
<td>10.52</td>
<td>115.5</td>
<td>0.929</td>
</tr>
<tr>
<td>(b) initiation of population expansion</td>
<td>all codons (fast calibration)</td>
<td>2.70</td>
<td>2.48</td>
<td>0.293</td>
</tr>
<tr>
<td></td>
<td>third codons (slow calibration)</td>
<td>2.35</td>
<td>3.30</td>
<td>0.487</td>
</tr>
<tr>
<td></td>
<td>third codons (fast calibration)</td>
<td>1.33</td>
<td>1.96</td>
<td>0.508</td>
</tr>
<tr>
<td></td>
<td>cyt-b-only</td>
<td>3.97</td>
<td>3.61</td>
<td>0.289</td>
</tr>
</tbody>
</table>

Wisconsin period (approx. 45 000 BP) [92,93]. Using the fast calibration, we estimate population size expansions initiated on average for all 19 species around 58 000 BP; which plausibly coincides with Middle Wisconsin deglaciation estimated from these glacial reconstructions.

Studies using genetic data to infer historic population dynamics often incorporate bioclimatic SDMs, which have been used extensively to hindcast species ranges throughout time (e.g. [10]). SDMs have provided much of the evidence for predicted range shifts and contractions throughout the glacial cycles [94]. Recent findings, however, suggest that the magnitude of range expansion estimated by SDMs may not be correlated with the magnitude of \(N_e\) changes inferred from genetic data [8]. One potential explanation for the decoupling of range size versus \(N_e\) throughout time is that SDMs assume niche conservation through time [95–97]. Predictions from SDMs do not always match fossil or pollen records, suggesting that niches can change throughout time [96,98]. Although spruce-fir (Picea sp.–Abies sp.) dominated boreal forests were probably more limited in extent during the LGM, there is evidence of widespread forested land throughout the eastern conterminous United States at the LGM [99–101]. The bird species in this study include several spruce-fir forest obligates (sensu [102], Empidonax flaviventris, R. satrapa and Co. calendula) but most of the species included here inhabit the hemiboreal region and use mixed deciduous-coniferous forest. The widespread availability of forested habitats at the LGM could have supported large \(N_e\) of contemporary hemiboreal species until northward range expansion was possible. Additionally, populations could have persisted in other proposed refugia, including current-day Newfoundland, the southern Appalachian Mountains and the Rocky Mountains [59,60,103–105]. SDM analyses exploring a slightly relaxed assumption of perfect climatic niche conservatism could help test the hypothesized maintenance of genetic diversity through the LGM, by evaluating the existence of suitable forested habitat at the LGM to support large populations.

A limitation of our study is that, although we used all 13 mitochondrial protein-coding genes, they are inherited as a single, non-recombining locus, which may not track population history closely [39,106,107] and may be subject to shared selection [108–110]. Additionally, it is possible that BSP analyses based on a single locus might only detect the most dramatic population size fluctuations and miss the signature of other, perhaps more recent, population bottlenecks and expansions. Using higher coverage whole-genome data for pairwise sequentially Markovian coalescent analysis might facilitate detection of repeated population size contractions and expansions, as seen in previous studies (e.g. [18,44,111]). However, we note that recent demographic studies of temperate birds and mammals using coalescent analysis of whole-genome data have also found similar patterns wherein the most recent substantial increase in \(N_e\) detected in some species [111] or populations [18,44] occurred prior to the LGM. Yet, owing to the widespread assumption that population size expansion should coincide with post-LGM northward range expansion, some studies have concluded that the most important expansions occurred following the LGM despite genomic evidence for pre-LGM expansion [44,112]. Our consistent results from 19 co-distributed bird species support the findings of whole-genome analyses in other taxa [44,112] and collectively point to population bottlenecks and recovery prior to the LGM as having had a potentially greater impact on shaping contemporary population genetics than the period following it for many temperate and boreal terrestrial taxa.

We also used historic \(N_e\) and timing of population expansion estimates from BSPs to explore differences in historic population dynamics considering current-day migratory behaviour. Under the ‘migratory switch’ hypothesis [51], species that are long-distance migrants today could have avoided population bottlenecks by switching to inhabit larger, tropical ranges year-round, whereas short-distance migratory species maintained migratory behaviour and bred in contracted ranges in the Northern Hemisphere. Instead, we found that neither historic \(N_e\) nor initiation of population expansion were correlated with current migratory distances and therefore wintering locations. Glacial cycles, including the LGM, impacted the geographical distributions of species and therefore their migratory patterns, but evidence supporting complete losses of migratory behaviour and switches to year-round residency at low latitudes remains scarce. Our finding is consistent with the growing body of literature suggesting...
that long-distance migrants probably maintained seasonal migration throughout the glacial cycles [17,25–27].

In conclusion, we found strong evidence for population size expansions during the Pleistocene that predated the LGM in most of the co-occurring boreal forest bird species, contrary to hypotheses of concomitant range and population size expansions driven by deglaciation following the LGM. Instead, the timing of population expansions may coincide better with the Middle Wisconsin deglaciation (approx. 45 000 BP). Our results suggest genetic diversity was maintained through the LGM, potentially owing to sufficient forested habitat across the land in the present-day eastern United States as well as other potential refugia. The evidence from our study and other recent studies for such historic population recovery occurring earlier than previously thought provides important context for understanding modern genetic diversity and structure of temperate species, including a putatively longer period of recovered genetic diversity since the last substantial population bottleneck.

Ethics. Field sampling was approved by the University of Michigan Animal Care and Use Committee (no. PRO00010608).

Data accessibility. Genetic data generated from this study were archived on GenBank (Accession OQ034700–OQ048159). Data used for analysis are publicly available on Dryad Digital Repository (doi:10.5061/dryad.b2brnzskk) [113] and R code is available at Zenodo (doi:10.5281/zenodo.7447931).

Additional information is also provided in the electronic supplementary material [114].

Authors’ contributions. A.K.K.: conceptualization, data curation, formal analysis, investigation, methodology, validation, visualization and writing—original draft; T.M.P.: conceptualization, data curation, funding acquisition, methodology, writing—review and editing; A.W.J.: funding acquisition, writing—review and editing; K.S.W.: formal analysis, writing—review and editing; C.L.B.: writing—review and editing; J.H.: writing—review and editing; J.J.K.: writing—review and editing; K.C.R.: methodology, writing—review and editing; B.W.B.: writing—review and editing; R.H.: writing—review and editing; B.M.W.: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, supervision, validation, visualization and writing—original draft.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.

Conflict of interest declaration. We declare we have no competing interests.

Funding. This material is based upon work supported by the National Science Foundation under grant no. 2146950 to B.M.W. This research was supported by the Jean Wright Cohn Endowment Fund, Robert W. Storer Endowment Fund, Mary Rhoda Swales Museum of Zoology Research Fund and William G. Fargo Fund at the University of Michigan Museum of Zoology; and the William A. and Nancy R. Klamm Endowment funds at the Cleveland Museum of Natural History. T.M.P. was supported by the NSF Graduate Research Fellowship (DGE 1256260), Fellow ID 2018240490) and a University of Michigan Rackham Graduate Student Research Grant.

Acknowledgements. For permits to collect specimens in the field, we thank the United States Fish and Wildlife Service, the United States Forest Service, the Minnesota Department of Natural Resources, the Michigan Department of Natural Resources, the New York State Department of Environmental Conservation, Vermont Fish & Wildlife Department, Vermont Agency of Natural Resources, the Canadian Wildlife Service of Environment and Climate Change Canada, Alberta Fish and Wildlife and Manitoba Fish and Wildlife. For providing additional tissue samples, we thank the American Museum of Natural History (Brian Smith, Joel Cracraft, Paul Sweet, Peter Capainolo, Tom Trombone), Cornell University Museum of Vertebrates (Ibry Lovette, Vanya Rohwer, Mary Margaret Ferraro, Charles Dardia), University of Minnesota Museum of Natural History (Keith Barker), University of California, Berkeley Museum of Vertebrate Zoology (Rauri Bowie and Carla Cicero). For assistance in the field, we thank Joe Bopp, Susan Campbell, Shane Duflay, Gary M. Erickson, Mary Margaret Ferraro, Alyssa FitzGerald, Laura Gooch, Eric Guison-Castillo, Joel Ralston, Corey Scobie, Vera Ting and Brian Weeks. Next-generation sequencing for this project was partially carried out in the Advanced Genomics Core at the University of Michigan. This research was also supported in part through computational resources and services provided by Advanced Research Computing (ARC), a division of the University of Michigan. C.L.B. was supported in part through computational resources and services provided by the University of Michigan Center for Academic Computing, and Carla Cicero). For assistance in the field, we thank Joe Bopp, Susan Campbell, Shane Duflay, Gary M. Erickson, Mary Margaret Ferraro, Alyssa FitzGerald, Laura Gooch, Eric Guison-Castillo, Joel Ralston, Corey Scobie, Vera Ting and Brian Weeks. Next-generation sequencing for this project was partially carried out in the Advanced Genomics Core at the University of Michigan. This research was also supported in part through computational resources and services provided by Advanced Research Computing (ARC), a division of Information and Technology Services (ITS) at the University of Michigan, Ann Arbor.

References

14. Davies S, Snelling J, Carver J, Ferraro, Alyssa FitzGerald, Laura Gooch, Eric Guison-Castillo, Joel Ralston, Corey Scobie, Vera Ting and Brian Weeks. Next-generation sequencing for this project was partially carried out in the Advanced Genomics Core at the University of Michigan. This research was also supported in part through computational resources and services provided by the University of Michigan Center for Academic Computing (ARC), a division of Information and Technology Services (ITS) at the University of Michigan, Ann Arbor.

